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PROPERTIES OF SOLUTIONS OF THE DYNAMIC PROBLEMS 
OF THE GENERALIZED COUPLED THE~OE~STICITY* 

R.I. MOKRIK and 1u.A. PYR'EV 

Analytic properties of solutions of fundamental dynamic problems of the generalized 
coupled thermoelasticity with the finite rate of heat propagation takenintoaccount, 
are investigated. In the particular case of infinite rate of heat propagation the 
results obtained sharpen the results and conclusions given in /1,2/. A problem of 
thermal shock at the surface of a spherical cavity is studied. 

1. Fundamental solutions of generalized thermoelasticity. Dynamic processes 
taking place in thermoelastic media can be described by the following system of equations /3/: 

~(~,)I~-y~radn,--p=--F, \~=ae(3h-+2~) (1.1) 

Here U = (Ur, &z, +) is the displacement vector, up is the temperature, F = (F,, F,, F,) is the 
mass force density vector, Q(t, t) is the specific intensity of the heat sources, a@ is the 
linear thermal expansion coefficient, h and p are the Lamk coefficients, t, is the heat flux 
relaxation time, q is the coupling coefficient, x is the heat diffusion coefficient and A is 
the Laplace operator. In addition to (1.11, we shall consider the corresponding elliptical 
system for the Fourier transforms with respect to time of the functions sought. The system 
describes the thermoelastic pseudooscillations at Im m >0 and steady thermoelastic oscilla- 
tions at Im 0 = 0: 

8 
B4j (ax* 0) = I~Q 3 1 B44(~s,o)=A+SW1, CJ=im(l-id)-) 

HF = (H,F, HZF, H,F, HdF), ffkF = - pFkF, HaF = - 10 (1- hot,) QF, k, j = 1, 2, 3 

Here UF denotes the Fourier transform, with respect to time, of the four-component vector U = 

@I, %r %t u3 
in 
x .- 

lJF (X. 0) = $=g \ I/ (x, t) @Of dt (1.3) 
-m 

and HP is the four-component vector Fourier transform of the vector of mass forces and heat 
sources. 

The matrix of fundamental solutions of the homogeneous equation (1.2) has the form 

Tkj(x~w)=fii{~~~sk4)(1-sj4)(~s~~~~~)-i 

p=1 k I 

fb [ qnsk4 (I ’ a 
-sj4),j-$j4(1-sk4)~ I + sk48jlyp 

*=p (iA, I z I 1 

lzl 

(1.41 
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ap = (1 - at-‘Q&*) & - & , PP = 
(-- 1)” (61, + 62,) 

23-t (h + 211) (hz’ - w 
VP = P”P2 - h2) @ + 21”) BP’ k12 = pd (h + 2pp 

ilap=O~ p~ll%=OT 2fipilh=l 

A,2 + h,2 = Qx-’ + vqbl (A -+ 2~)~’ + k,‘, h,‘h,’ = 61~~~k.1’ 

?‘+a = p6Pp-‘. 

We note that, as t,-+O (1.4) yields a representation for the matrix of the fundamental solu- 

tions of the corresponding system of equations of thennoelasticity, for the case of infinite 
rate of propagation of thermal perturbations obtained in /1,4/. Using (1.4), we write the 
characteristic thermoelastic parameters in the form (cG is rate of heat propagation) : 

ak= + T [ax + i (1 + E) + 1/~E]““, k=i,2 

E= 1(x -!- ixz" - xl")(x + ixz" i- xl")]"z 

X=3, m*=c1‘ 
x ’ 

C12_ hf% , 
P 

N = t 

cq 
2=x VI 

1, ’ E=Tq$? 
x1o - 2 ;” , x20 = $- 

p _ $ - 4M2, q = a (1 $- E) - 2, a = 1 + Ma (1 -A- e) 

Cl.51 

2. Basic properties of the solutions of dynamic thermoelasticity problems. 
Lemma 1. The characteristic parameters hk have the following properties: 

a) when M2 -=z (1 - E) (1 -i- .E)-~ , the functions hk = lLk (01, k= 1.2 have second order branching 

points in the half-plane Imw = c> 0 

xrt = t xl0 - ixzo 
bl hk (61) =O ( 1 0 I) as ] 0 ] --f cm, k = 1, 2, 3; 
cl Im&> 0 in the half-plane Imo > 0, k = I, 2, 3; 
d) Reh&O when Reo 20, k = 1, 2, 3. 

(2.1) 

Proof. The properties a) and b) follow directly from the expression (1.5) for the 

characteristic parameters. The properties c) and d) are obvious for k=3. Ta prove the prop- 

erties c) for k= 1,2 we consider the function E of complex variable X. We determine E unam- 

biguously by considering the complex plane x= xl+ixa as a two-sheeted surface where the sheets 
are joined together along the edges of the cuts shown in the Fig.1. Then, fixing the branch 

of the root by the condition that ImE>O when x*=0, we obtain 

- L,A’, - L1N2 in region 1 
F&E= L,N1- LIN, in region 2 (2.2) 

L,N, + LIN, in region 3 

Itn E = LIN, - L,NI in regions 1 and 3 

LIN, + L.“vP 
(2.3) 

in region 2 

Fig.1 

where 

R 118 = [(x2 i- XaY’ -I- (Xl T x*W”’ 

Fixing the branches of the functions h,(o)@ = 1,2) on the upper sheets of the four-sheeted 

Riemannian surfaces bymeans of the conditions that Imh,>O when xz~i- m, we obtain from (2.2) 

and (2.3) 
- JfZ, v/k2 - x2) (2.4) 
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According to (2.4), the condition Iluh,>O (nl= 1,2) is equivalent, for Xz>O, to the inequality 

x,, >0 (2.5) 

which is obvious for m=l in region 2 and in parts of the regions 1 and 3 for Xn>max (-Xxi'~Ol, 
since here ImF>O in accordance with (2.2). The inequality (2.5) is also obvious for ,)I= 2 

in parts of the regions 1 and 3 for 0 < Xn < max I-- xz"9 0) , since here we have Im E<O in accord- 

ance with (2.2). In the remaining parts of the regions 1,2 and 3 where the inequality (2.5) 
is not obvious, it can be reduced to the form 

IXSS (P + 4M9 + 2X? (1 + e) a + (i + EY + PX1’1 Xn (1 + MY%) + EX*’ > 0 (2.6) 

which is obvious, and this proves the property c). Property d) is proved in the same manner. 

We note that the property c) was proved for a particular case of M= 0 in /l/ under the con- 
straint ImX>-x2', i.e. for Im 0 > (h + 2~) (1 - e) (px)+). 

Theorem 1. The elements of the matrix of fundamental solutions T~J (2, 0) ofthesystem 
of homogeneous equations (1.2) are analytic functions of the complex variable o in the half- 
plane Imo > 0. 

Proof. From (1.4) and property a) of Lemma 1 it follows that the branch points (2.l)may 
represent the only singularities of the elements of the matrix of fundamental solutionsinthe 
half-plane Imw > 0. It can be shown that the elements of the matrix (1.4) can be written in 
the form 

(2.7) 

where A,> and Bkj are analytic functions of the parameter o at Imo> 0. From (2.71, expand- 
ing the radicals hr and hz near the branch points (2.1) into the generalized power series, we 
obtain 

TkJ = Ak.*E*-’ sin (E*C 15 I) + Bkj* COS (E-J 1 z I) 
(2.8) 

E, = (x + xl0 + ix$')"a 

Here AkJ*, Bk. and C are analytic functions of the variable 0 in the neighborhood of the points 
of expansion. Expressing the elements of the matrix of fundamental solutions near the points 
X* in the form (2.81, proves the theorem. 

Transferring now the classification of the fundamental boundary value problems of thermo- 
elasticity I*, II*, III*, IV*/l/to the generalized thermoelasticity, we formulate the following 
theorem. 

Theorem 2. If Imo>O, then the problems corresponding to I*, II*, IIIrt,IV* are solv- 
able for the Fourier transforms (pseudooscillations), their solutions are unique and can be 
written in the form of the corresponding thermoelastic potentials of the correspondingproblems 
of /l/. 

The assertion follows from the property c) of the characteristic parameters after carry- 
ing out the manipulations analogous to those given in Ch.X of /l/. We shall assume now that 
the initial parameters of the problem, i.e. its functions describing the behavior of components 
of the deformation and temperature fields and of their necessary derivatives at the region 
boundary, as well as the mass force and heat source densities, can increase exponentially with 
time. Then we have the following theorem. 

Theorem 3. If c> 0 is the largest index of exponential growth with respect to time of 
the initial parameters of the corresponding boundary value problems I*, II*, III*, IV*, then the 
Fourier transforms of their solutions are analytic functions of the variable 0 when Im o > a'> 
O> 0. The proof follows directly from Theorems 1 and 2 exactly as in /l/. 

Corollary. If the exponential growth index with respect to time of the initial para- 
meters of the corresponding problems is zero, then the Fourier transforms of their solutions 
are analytic functions when Im o > o'> 0. 

The properties of the Fourier transforms of solutions of the corresponding problems make 
it possible to write the solutions themselves in the form 

where the contour r lies in the upper half-plane and is chosen in accordance withthecausality 
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principle /5,6/ so that is passes all singularities of the transforms from above. In an im- 
portant particular case when the exponential growth index with respect to time of the initial 
parameters of the problems o = 0, the contour r coincides with the real axis, passing all 
possible singularities lying on this axis through the upper half-plane of the complex variable 

0,. 

The results obtained imply that the thermoelastic medium cannot be active (unstable, be- 

coming stronger) /6/, i.e. the perturbations within it cannot continue to grow in time after 
the source of perturbations has become inactive. Neither can they grow more rapidly than the 

perturbations of the source, and this satisfies the analytic criterion of the causality prin- 

ciple /6/. This corollary rectifies the results of /7/. The results obtained follow from 

Theorem 3, which generalizes, and at the same time sharpens the properties ofthetransforms ofi 

the analogous problems for the particular case of infinite rate of heat propagation cp~- 00, 

given in /l/. The results of /l/ were used in /7/ to derive a conclusion that the dynamic 

coupled problem of thermoelasticity does not satisfy the causality principle. 

3. Generalized, centrally symmetric problem III-. Let us consider an infinite 

thermoelastic medium with a spherical cavity of radius TO. The surface of the cavity is 

subjected to a mechanical and thermal action as follows: 

(3.1) 
err = - fl (QH (t), 8 = uq = f* (t)H (t), r = r” 

H @) = i 

1, t>O 

0, t < 0 

The resulting nonsteady fields of stresses, deformations and temperature satisfy the system 

(l.l), the boundary condition (3.1) and the condition of causality /6/. UsingacomplexFourier 

transform, we write the solution in the form 

i&f* u,=;(f) (3.2) 

o,,=(h+2p)~+2h,~-(3h+2p)ae0 

y p, t) = _+!.&_ S [ 2 c, (+ _ a,z)-’ .2hp(‘-h)] e-“d do 

r p=1 

C,=(- 1)P J-(-f& - h,qflqo)~($- hi**)- WhfaF (a) x 
[oar02 + 4c,a@&*1 - I)] D-l, 

I 
P = 1, 2, 

fjF(W)=~Sfj(t)eiofdt, f=I,2 
0 

D = (h, - 1,) [(?h + h,) (02r02 - 4~~“) $- 4ic2*ro 

The contour r in (3.3) is chosen in accordance with Sect.2. 

Let us give the complete solution obtained by computing the integrals (3.3) with help of 

the properties of the characteristic parameters hi,, of Lemma 1, for the case when the stress 

and temperature fields appear as the result of the action of thermal shock fz(t) = B0 = const, 

fl(t) = Oat the surface of the spherical cavity with p = 0, the case correspondingtoaphysical 

model of a thermoelastic liquid medium 

%'~e(fi,~)=H(~+) + Ir(R, Q[t-I(7_)---@+)I + ri(R,r) (3.4) 

(Bapmlc12)-'R H, er,(li> r) =Iz(R> 7) [fJ (7_) - H @+)I + r,(R, r) 

I,(R,T)=+e-Xxor r (e-"+y+ + e-a-V_)&, n=l,2 

Y*= +f%* 
2dk 

slncp;_ [(Q -2) W- xtO'Pkl$,+ $,, 
cos%t 0 d WC%,+ %,J 

q+ = 1 + z&d, d = 1/;[(x# - x"]'/., k,, = [(x$)2 + sa]'!z 

'P*"(R--II,)y*--t5, a*=@-RR,)B*, T*.T-((H-&)c-; 
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c*= V/z@ * dp)-Y: 

zo = [(X*0)2 + (Yo)*]'/l, 

v*=z-'/q[z~+ X*%+ + vzo- X*@_) 

fl* = 2-v: (r/P + X*W_ - v/z0 - X*OK+) 

K, = (ko +- x2)“;, X*“=-xXzoa+l+e+d, Y"=-a2 

J,(")H(z_) + H (r_) - H (z,), 
O,<M2<(1-&)(1+E)-2 

I’,(R, t) = Jn (x3 IH (0 - H @+)I + J,, (0) H CT+), 
(l-E)(l+E)-a<hfa<((l-E)-’ 

J, (0) H (r+)v (I- E)-I < Ma < co 

A = 2-l (h + 1 + E - UZ), h = v/p [(Xao - s)~ + (xl”)al”~ 

z+, R+r, Ro=e,ro 

The solution (3.4) implies that in the case o"f a generalized, coupled centrally symmetric pro- 
blem of thermoelasticity under the mechanical and thermal action at the region's boundary,the 
resulting temperature and stress fields propagate with velocity'c and undergo a jump at z = 
(R - R,)c+-‘. The solutions obtained hold for any value of the parameters R,r, ~,t, while in /8/ 
the solution of a particular case of the problem with the inertial terms neglected was const- 
ructed using the method of perturbing the parameter E and asymptotically for small values of 
time I*. We also note that the solution (3.4) can be used to obtain the behaviorofthestress 
and temperature fields when 5-m: 

(‘UJ~,*)-‘~ bll (8, 7) = (R -R,) 
,-‘I2 

2)/n' 
tl;'.$J(R,r)= 1- (R --a,) 

0 

which agrees with the conclusions of Sect.2. 
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